Что такое биотехнология и какой будет медицина будущего: отвечает BIOCAD

16 апреля 2023, 16:41

Разговор с генеральным директором биотехнологической компании о том, какими будут лекарства и врачи будущего и правда ли, что нас всех скоро зачипируют.

Сегодня перед биотехнологом стоит много нерешённых технологических задач. Можно изменять биологические организмы для обеспечения потребностей людей с помощью клеточных и генно-инженерных методов. Например, улучшать качество продуктов, получать новые виды растений и модифицировать животных, придавать живым организмам необходимые свойства и создавать новые лекарственные препараты методами генной инженерии, искусственного отбора, гибридизации.

Однако, чтобы работать биотехнологом, нужно знать не только генетику, молекулярную биологию, биохимию, клеточную биологию, но также ботанику, химию, математику, информационные технологии, физику и другое. Грубо говоря, биотехнологи — это инженеры в области естественных и точных наук.

Генеральный директор инновационной биотехнологической Biocad Дмитрий Морозов рассказал об этой интересной профессии и будущем биотехнологий.

Biocad — это международная инновационная биотехнологическая компания. В ней есть научно-исследовательский центр, проводятся доклинические и клинические исследования собственных фармацевтических препаратов. Департамент перспективных исследований Biocad занимается разработкой лекарственных препаратов передовой генной и клеточной терапии, а, кроме того, поиском и анализом сигнальных путей, закономерностей и мишеней, которые позволяют разрабатывать препараты превентивной медицины.

Что такое биотехнология?

Биотехнология — это использование живых систем, клеток, организмов для практических нужд человека. То есть использование современной науки для манипуляции с живыми объектами, чтобы получить некую выгоду и улучшить жизнь человека.

Биотехнология отталкивается от потребностей. Например, не зря люди ездят на север и изучают гейзеры. Они понимают, что 10 лет могут искать и ничего не найти. Но они всё равно это делают, потому что рано или поздно найдут какую-нибудь бактерию, которая позволит делать дешёвое биотопливо, используя один ген этой бактерии. Так или иначе каждый человек, когда занимается наукой, надеется её применить (кроме теоретических физиков, хотя, наверное, они тоже захотели бы в космос полететь). В компании Biocad мы используем микроорганизмы для создания лекарств.

Говорят, все открытия происходят на стыке разных специальностей: математика, биология — биоинформатика; биология, химия — биохимия; медицина, информатика, биология — биомедицинская информатика. Это всё отдельные блоки, которыми занимаются разные люди. Биотехнология сегодня, наверное, более всего уделяет внимание созданию лекарств разных типов. Кроме фармацевтического направления биотехнологии интересно сельское хозяйство (улучшение свойств еды), экология, энергетика (получение биотоплива) и прочее. И, конечно, в будущем можно думать о коррекции человека.

Генная инженерия и биотехнология

В биотехнологии важное место занимает генная инженерия. Она широко распространена в исследованиях, однако вовсе не обязательно использовать её методы, чтобы получить полезные свойства у объекта. Например, можно разобраться в особенностях метаболизма организма: как он живёт в нормальной среде обитания и что получится, если мы переведём его в другую среду обитания, с другими питательными факторами, в другую атмосферу — возможно, это поможет ему в итоге, и это может быстрее размножаться. Но это же не генная инженерия.

Биотехнология — это манипуляции со знаниями, которые есть о данном объекте. Генная инженерия просто расширяет круг возможностей, разных комбинаций, даёт возможность совершать манипуляции на уровне молекул, поэтому более точна.

Биотехнология на самом деле существует столько, сколько сельское хозяйство. В сельском хозяйстве часто есть конкретная практическая цель — например, вывести породу быстрых лошадей или устойчивое к холоду растение. Этим люди занимаются уже сотни лет с помощью селекции, которая на самом деле является генетическим методом отбора.

Биотехнологическая этика: как общество относится к биотеху?

Люди по-разному воспринимают нововведения в биотехнологии. Есть негативные и позитивные примеры восприятия.

Негативные — это, например, мнение, что внедрение нового приведёт к появлению вирусов, которые будут распространяться по всему миру и от которых нет ни вакцины, ни лечения, и что периодические эпидемии именно с этим и связаны.

Из позитивных — например, можно создать вирус, который на время меняет цвет глаз. Постепенно они становятся своего цвета, и каплями антибиотиков можно снова сделать их голубыми. Это мало связано со здравоохранением в привычном смысле, но всё равно здорово. Подобные манипуляции уже в теории можно делать, и к таким технологиям общество относится позитивно и с улыбкой. Однако в целом люди боятся внедрения новых технологий. Да и чтобы внедрить новое, нужно на высшем уровне обсудить этические вопросы того или иного воздействия препарата, и обычно это происходит долго.

Биотехнология в Biocad: лечение нуклеиновой кислотой

Несколько лет назад в Biocad мы открыли Департамент перспективных исследований, основная цель которого — создание лекарственных продуктов передовой генной терапии. Этот термин объединяет три группы лекарственных препаратов, которые не похожи на все остальные лекарства, к которым мы привыкли.

Во-первых, это препараты для генной терапии, во-вторых, это препараты, в основе которых лежит манипуляция с соматическими и стволовыми клетками человека, в-третьих, это препараты тканевой инженерии.

В основе действия классических лекарств лежит либо малая молекула химической природы, либо какой-то белок, например, антитело, который можно легко получить с помощью биотехнологических методов. В нашей разработке лекарственным веществом, то есть действующим фактором, является нуклеиновая кислота РНК или ДНК. Это новый способ воздействия на организм человека. Это направление не так давно стало бурно развиваться, поэтому к нему пока что относятся с осторожностью.

Как работают препараты для генной терапии

Наше лекарство — это рекомбинантный вирус, наночастица на базе вируса, внутри которой находится ген, которого недостаёт больному человеку. Направлены эти продукты, как правило, на заболевания, которые плохо поддаются лечению (наследственные заболевания с тяжёлыми проявлениями вплоть до летального исхода в раннем возрасте: дистрофия, нарушение зрения, световосприятия, иммунодефициты). Это в основном моногенные заболевания, в которых проявление болезни обусловлено дефектом одного гена. В таких случаях они очень хорошо лечатся. В лаборатории мы создаем терапевтические вирусные частицы, а биоинформатики помогают нам моделировать их работу.

В случае полигенных заболеваний, например, рака, можно использовать методы генной терапии для модификаций клеток иммунной системы человека, чтобы получать иммунные клетки с высокой специфичностью к опухолевым клеткам. В лабораториях наши учёные осуществляют полный цикл разработки этих двух типов продуктов (от идеи до создания прототипов, готовых для тестирования на животных). Такого в России нет, наверное, нигде.

Медицина будущего: развитие новых типов лекарств

Наш департамент назван по аналогии с Управлением перспективных исследовательских проектов США (DARPA). Они пытаются внедрять достижения науки в целях увеличения обороноспособности страны — это ускоренная регенерация, универсальные доноры, оружие и прочее.

Возможно, в ближайшие 5-10 лет благодаря взаимосвязи кибернетики и биотехнологии действительно будут созданы умные лекарства. Например, создание очень маленьких чипов: это капсула или робот с частицами лекарственного средства, циркулирующие в крови, из которых в зависимости от состояния человека нужное вещество будет впрыскиваться в кровь. Подобным занимаются, например, в MIT. Уже есть успешные примеры: в зависимости от уровня глюкозы в организм вбрасывается инсулин, что минимизирует степень инвазивности лечебной процедуры. Человек один раз внедрил чип, сделал инъекцию и на очень длительное время забыл, что нужно принимать лекарство.

Даже известный футуролог Рэй Курцвелл говорит, что люди начнут жить дольше с помощью нанороботов к 2025 году. Скорее всего, он имеет ввиду препараты, которые будут бороться с онкологическими заболеваниями.

Нанороботы — новый формат препаратов, потому что с точки зрения веществ, из которых состоят лекарства, люди уже всё сделали. Мы ничего больше предложить не можем — типов химических соединений, которые можно использовать для терапии немного. Это либо белки, либо малые молекулы, либо нуклеиновые кислоты, которые теперь тоже применяются.

Вариантов и тех, и других, и третьих, конечно, можно сделать безграничное количество, но они имеют ограниченный потенциал применения, так как работают по общим химическим принципам. По-другому воздействовать на клетку уже никак невозможно.

Конечно, большинство хочет просто принять таблетку, но не все лекарственные вещества можно в неё «вложить». Более простой вариант — капсула. Более эффективный — инъекция и суппозитории. И если был бы какой-то универсальный способ лечения, например, закалывать какой-то чип с концентратом лекарственного средства под кожу, но раз в год, думаю, многие бы на это пошли.

Диагностика заболеваний

Развитие малоинвазивных методов диагностики будет нужно человеку, чтобы, грубо говоря, по капле крови можно было быстро определять состояние человека: есть ли у него онкологическое заболевание и, если да, то есть ли метастазы, что за рак и прочее.

Сейчас это можно делать по определённому количеству миллилитров крови с помощью высокопроизводительных методов, но пока это довольно дорого. Мы идём к индивидуальному профилированию человека, чтобы знать про себя всё до уровня молекулы. Человек будет понимать, что конкретно с ним происходит в данный момент.

Может возникнуть нечто вроде социальной сети профайлов, где будут храниться все данные — например, по экспрессии генов за последний месяц. Кажется, что здесь всё легко, но на самом деле это миллиарды последовательностей, сотни генов с разными мутациями, разной степени значимости. Поэтому нужен будет новый класс врачей-теоретиков, которые будут уметь интерпретировать это огромное количество данных.

Регенерация, искусственный интеллект

Наверное, в будущем мы научимся регенерировать ткани и органы. Уже сейчас выращивают органы с нуля до реального размера из клетки благодаря 3D-печати. Также пытаются восстанавливать спинной мозг после травмы — печатать нейроны в месте повреждения. Иными словами, прививать человеку его же клетки, размноженные в лабораторных условиях.

Также учёные будут больше использовать искусственный интеллект и нейросети, чтобы создавать новые лекарственные препараты. Самообучающийся ИИ должен будет сам накапливать достаточное количество знаний, которые позволят ему давать правильные ответы. Если это не контролировать, может, наверное, произойти катастрофа, но, с другой стороны, он сможет значительно развязать руки исследователям и дать возможность генерировать новые идеи, ведь ИИ будет брать на себя все рутинные процедуры.

Источник: https://start-365.ru